Direct product G=NxQ with N=C4 and Q=C24
Semidirect products G=N:Q with N=C4 and Q=C24
Non-split extensions G=N.Q with N=C4 and Q=C24
extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1C24 = C22xD8 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | | C4.1C2^4 | 64,250 |
C4.2C24 = C22xSD16 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | | C4.2C2^4 | 64,251 |
C4.3C24 = C22xQ16 | φ: C24/C23 → C2 ⊆ Aut C4 | 64 | | C4.3C2^4 | 64,252 |
C4.4C24 = C2xC4oD8 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | | C4.4C2^4 | 64,253 |
C4.5C24 = C2xC8:C22 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | | C4.5C2^4 | 64,254 |
C4.6C24 = C2xC8.C22 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | | C4.6C2^4 | 64,255 |
C4.7C24 = D8:C22 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | 4 | C4.7C2^4 | 64,256 |
C4.8C24 = D4oD8 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | 4+ | C4.8C2^4 | 64,257 |
C4.9C24 = D4oSD16 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | 4 | C4.9C2^4 | 64,258 |
C4.10C24 = Q8oD8 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | 4- | C4.10C2^4 | 64,259 |
C4.11C24 = Q8xC23 | φ: C24/C23 → C2 ⊆ Aut C4 | 64 | | C4.11C2^4 | 64,262 |
C4.12C24 = C2x2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | | C4.12C2^4 | 64,264 |
C4.13C24 = C2x2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C4 | 32 | | C4.13C2^4 | 64,265 |
C4.14C24 = C2.C25 | φ: C24/C23 → C2 ⊆ Aut C4 | 16 | 4 | C4.14C2^4 | 64,266 |
C4.15C24 = C22xM4(2) | central extension (φ=1) | 32 | | C4.15C2^4 | 64,247 |
C4.16C24 = C2xC8oD4 | central extension (φ=1) | 32 | | C4.16C2^4 | 64,248 |
C4.17C24 = Q8oM4(2) | central extension (φ=1) | 16 | 4 | C4.17C2^4 | 64,249 |
C4.18C24 = C22xC4oD4 | central extension (φ=1) | 32 | | C4.18C2^4 | 64,263 |
x
:
Z
F
o
wr
Q
<